
Gammapy – A prototype 
for the CTA science tools
C. Deil1, R. Zanin1, J. Lefaucheur2, C. Boisson2, B. Khélifi3, R. Terrier3, M. Wood4, L. Mohrmann5, N. Chakraborty1, J. Watson17, R. López
Coto1, S. Klepser6, M. Cerruti7, J.-P. Lenain7, F. Acero8, A. Djannati-Ataï3, S. Pita3, Z. Bosnjak9, J.E. Ruiz10, C. Trichard11, T. Vuillaume12 for
the CTA Consortium, A. Donath1, J. King1, L. Jouvin3, E. Owen13, M. Paz Arribas14, B. Sipocz15, D. Lennarz16, A. Voruganti1, M. Spir-Jacob3

1MPIK, 2LUTH, 3APC, 4SLAC, 5FAU, 6DESY, 7LPNHE, 8CEA, 9Rijeka University, 10IAA-CSIC, 11CPPM, 12LAPP,
13UCL-MSSL, 14Humboldt University, 15Cambridge, 16Georgia Tech, 17Oxford. See www.cta-observatory.org

ACKNOWLEDGEMENTS: We gratefully acknowledge financial support from the agencies and
organizations listed here: www.cta-observatory.org/consortium_acknowledgments

CTA science tools
The Cherenkov Telescope Array
(CTA) will observe the sky in very-
high-energy gamma-ray light
soon. All astronomers will have
access to CTA high-level data, as
well as CTA science tools (ST)
software. The ST can be used for
example to generate sky images
and to measure source properties
such as morphology, spectra and
light curves, using event lists as
well as instrument response
function (IRF) and auxiliary
information as input.

Fig. 1: Gammapy is a Python
package, built on Numpy and
Astropy as core dependencies.

www.cta-observatory.org

Supported by:

ABSTRACT
Gammapy is a Python package for gamma-ray astronomy, built on Numpy and Astropy,  
and a prototype for the Cherenkov Telescope Array (CTA) science tools.
Here we give an introduction to Gammapy and show an application example how to create a sky
image using simulated CTA event data and instrument response functions.
For further information, visit docs.gammapy.org and follow the links to “tutorials” and “CTA”.

�⇡ A Python package for
gamma-ray astronomy

Gammapy stack
GAMMAPY APPROACH

CIAO's modeling and fitting package

10

5

Gammapy
Gammapy is a prototype for the CTA
ST, built on the scientific Python
stack and Astropy, optionally using
Sherpa or other packages for
modeling and fitting (see Figure 1).
Our initial focus was to implement
the common TeV analysis methods,
i.e. using 2-dimensional sky images
f o r s o u r c e d e t e c t i o n a n d
morphology character isat ion,
followed by spectral analysis or
light curve computation for a given
source region. A 3-dimensional
analysis with a simultaneous spatial
and spectral models of the gamma-
ray emission, as well as background
is in development.
F u r t h e r d e v e l o p m e n t s a n d
verification using data from existing
Cherenkov telescope arrays such as
H.E.S.S. and MAGIC, as well as
simulated CTA data is ongoing.

Behind the scenes …
Figure 2 shows a Gammapy code
example that generates a counts
image from an event list.
The key point here is that all data
are stored in Numpy arrays and
processed efficiently via calls into
existing C extensions in Numpy and
Astropy. For instance, in the
example , the Even tL is t and
SkyImage objects store coordinates
and pixel data as Numpy arrays,
respectively. Data processing
routines such as image.fill(events)
are based on Numpy histograms
and calls into the CFITSIO and
WCSLib C libraries.

Fig. 2: Gammapy code example:  
efficiently work with events and
pixels from Python, by always
storing data in Numpy arrays

Fig. 3: Significance image
computed with Gammapy.

Galactic centre region using
1.5 hours of simulated data

with CTA South.

Conclusions
In the past two years, we have
developed Gammapy as an open-
source analysis package for existing
gamma-ray telescope and as a
prototype for the CTA science tools.
W e f i n d t h a t t h e G a m m a p y
approach, to build on the powerful
and well-tested Python packages
Numpy and Astropy, brings large
benefits: A small codebase that is
focused on gamma-ray astronomy in
a single high-level language is easy
to understand and maintain. It is
also easy to modify and extend as
new use cases arise, which is
important for CTA, since it can be
expected that the modeling of the
i n s t r u m e n t , b a c k g r o u n d a n d
astrophysical emission, as well as
the analysis method in general will
evolve and improve over the next
decade.
Last but not least, the Gammapy
approach is inherently collaborative,
sharing development effort as well
as know-how with the larger
astronomical community, that to a
large degree already has adopted
Numpy and Astropy as the basis for
astronomical analysis codes in the
past 5 years.

Getting started
Visit docs.gammapy.org and browse the tutorial Jupyter notebooks
to get an overview of what Gammapy can do.
To install Gammapy, use one of
 pip install gammapy  
 conda install -c astropy gammapy
try out some of the tutorials locally, and then adapt them to your
application and use cases.
Note that Gammapy is under very active development. If you have
any questions, feature requests or find an issue, please contact the
Gammapy mailing list or issue tracker.

1 """Make a counts image with Gammapy."""

2 from gammapy.data import EventList

3 from gammapy.image import SkyImage

4 events = EventList.read(’events.fits’)

5 image = SkyImage.empty(

6 nxpix=400, nypix=400, binsz=0.02,

7 xref=83.6, yref=22.0,

8 coordsys=’CEL’, proj=’TAN’,

9)

10 image.fill_events(events)

11 image.write(’counts.fits’)

Fig. 4: Spectrum simulated and
analysed with Gammapy.
Example of a very short

exposure (100 seconds) with
CTA of a very bright source.

CTA applications
We show an example of a sky image
and spectrum computed with
Gammapy in Figures 3 and 4.
For further CTA application examples using Gammapy, see the following poster here at ICRC 2017:  
R. Zanin (Galactic plane), C. Trichard (PeVatrons), J. Lefaucheur (extra-galactic sources)

http://docs.gammapy.org/
http://docs.gammapy.org

