
Provenance Capture
Python Implementation

J. Enrique Ruiz (IAA – CSIC), Mathieu Servillat (Obs. Paris-Meudon)

French Weekly Provenance Meeting 
03/06/2020



Software candidates

Python framework for prototyping the low-level data processing
algorithms for the Cherenkov Telescope Array.
https://github.com/cta-observatory/ctapipe

Python tool prototype for the Cherenkov Telescope Array Science Tools. 
Software for end-users to analyse, model and fit science-ready data. 
https://gammapy.org

Python pipeline for the On-site Analysis of low-level data captured by the 
Large Size Telescope (Cherenkov Telescope Array precursor in La Palma)
https://contrera.gitlab.io/lstosa

lstchain
Python library for the processing of low-level data captured by the 
Large Size Telescope (Cherenkov Telescope Array precursor in La Palma)
https://github.com/cta-observatory/cta-lstchain

work-in-progress
software

https://github.com/cta-observatory/ctapipe
https://gammapy.org/
https://contrera.gitlab.io/lstosa/
https://github.com/cta-observatory/cta-lstchain


Requirements
How? 
Capture provenance info in text files using standard automatic logging mechanism.
Implementation non-intrusive in already existing code with function/class decoration.
Configuration set in independent config files.

Which info?
Defined in a file model following IVOA Prov recommendation.

What do we get?
Processing of log files to produce filtered provenance products using Prov syntax
JSON files and PDF graphs



A collection of command-line tools that may be used within Python scripts or in IPython
sessions/notebooks. 

Used and generated entities, as well as input parameters, for each tool are well known 
and can be described in the provenance model file.

Only provenance info defined in the model file is transparently and automatically logged
in a text file during the analysis session.

After session ends the log file can be post-processed to produce filtered (i.e. time-range 
or agent) provenance products like graphs for a basic inspection and analysis.

Gammapy High-level Interface API



All code is in an independent package/folder gammapy.utils.provenance
Responsible class providing High-Level Tools is decorated with @provenance
Execution environment is captured and stored in a session provenance entity 
Code initially forked from ctapipe.core.Provenance

Gammapy High-level Interface API
ht

tp
s:/

/g
ith

ub
.co

m
/B

ul
ta

ko
/g

am
m

ap
y/

tr
ee

/p
ro

v/
ga

m
m

ap
y/

ut
ils

/p
ro

ve
na

nc
e

https://github.com/Bultako/gammapy/tree/prov/gammapy/utils/provenance


co
nf
ig
/d

ef
in
it
io
n.
ya
ml

co
nf
ig
/l

og
ge
r.
ya
ml

co
nf
ig
/e
nv
ir
on
me
nt
.y
am
l



prov.log



session provenance graph

ht
tp

s:/
/o

pe
np

ro
ve

na
nc

e.
or

g/
st

or
e/

do
cu

m
en

ts
/1

85
2 

ht
tp

s:/
/o

pe
np

ro
ve

na
nc

e.
or

g/
st

or
e/

do
cu

m
en

ts
/1

85
2.

pn
g

https://openprovenance.org/store/documents/1852
https://openprovenance.org/store/documents/1852.png


A collection of daily scheduled scripts that are run in parallel in a grid environment. 

Used and generated entities, as well as input parameters, for each function in a script 
are well known and can be described in the provenance model file.

Only provenance info defined in the model file is transparently and automatically 
logged in a text file during the pipeline execution.

After data processing of a run ends the log file can be post-processed to produce 
filtered (i.e. time range, agent, activity, etc..) provenance products like graphs for a 
basic inspection and analysis.

LST On-site Analysis pipeline



Code is in a restricted access Gitlab repository curated/developed by GAE-UCM
All code is in an independent package/folder osa.provenance
Responsible functions providing data processing are decorated with @trace
Execution environment is captured and stored in a session provenance entity 
Post-processing of provenance logs may produce different levels of granularity

An observation may be a list of runs
A run is a list of subruns

Most of the info is hidden in small configuration files that are compared with hash-
content algorithm and copied for reproducibility purposes

LST On-site Analysis pipeline

https://www.gae.ucm.es/


co
nf
ig
/d

ef
in
it
io
n.
ya
ml

co
nf
ig
/l

og
ge
r.
ya
ml

co
nf
ig
/e
nv
ir
on
me
nt
.y
am
l



prov.log



data processing provenance graph



The importance of a model to capture interlinked info among activities.
Structured logging may be a solution for small session provenance storage.
Need of a provenance query mechanism for detailed analysis and inspection.
This is easier if provenance info is not stored in log files but in a RDBMS or noSQL database.
Independent capture from different dependent software packages is possible/desirable?

LSTOSA requires lsthain
lsthain requires ctapipe

Post-processing of captured provenance info may be needed to filter raw provenance 
according to specific needs and/or artificially produce different levels of granularity.

Lessons learnt


